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SUMMARY 

By a variably inclined MHD plane flow we mean a flow in which the magnetic and velocity fields are coplanar, 
the angle between these vector fields is variable and all the flow variables are functions of two coordinates 
and time. No work seems to have been done for these general plane MHD flows, even in the steady case. 

In the present paper the work in steady, viscous, incompressible flows is extended to general variably 
inclined, but nowhere aligned, flows with the objective of obtaining some exact solutions. We employ the 
hodog~aph transformation, one of the strong analytical methods, to f'md these solutions. 

1. Introduction 

A vast amount of  research has been carried out on the motion of electrically conducting fluids, 

moving in a magnetic field, since Alfven's [1] classic work. Mathematical complexity of  the 

phenomenon induced many researchers to adopt a rather useful alternate technique of investi- 

gating special classes of flows such as aligned or parallel flows, crossed or orthogonal flows, 

constantly inclined flows and transverse flows. These special classes of  flows yielded various 

solvable second order mathematical structures and, furthermore, these structures aided in the 

determination of similarities and contrasts with ordinary fluid-dynamics. These results were 

often achieved by employing well established fluid-dynamical techniques. For example, in the 

case of  an inviscid incompressible fluid in steady flow, Ladikov [2] has derived two Bernoulli 

type equations for orthogonal flows, Kingston and Talbot [3] have classified all orthogonal 

flows as radial, vortex, rectilinear or as certain types of spirals, Chandna and Nath [4] have 

established uniqueness properties for aligned flows and Waterhouse and Kingston [5] have 

determined all possible flow configurations for the constantly inclined case. Chandna et al. 
[6-13] have published a series of results for the steady viscous incompressible flow problem, 

obtaining various flow properties, geometries and solutions in the aligned, orthogonal and 

constantly inclined cases. 
An excellent survey of this, with applications to numerous non-linear problems, has been 

given by Ames [14]. In the study of  MHD, this method has been previously applied to aligned 
compressible flows by Smith [15], to viscous incompressible orthogonal flows by Chandna and 
Garg [12] and to constantly inclined incompressible flow by Barron and Chandna [13]. 
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The plan of the paper is as follows. In Section 2 the basic flow equations are cast into 
convenient form for this work. Section 3 contains the transformation of equations to the hodo- 
graph plane. Under these transformations, it is determined that these flows are governed by a 
system of two partial differential equations in the Legendre transform function and the trans- 
formed variable angle between the vector fields. Theoretical development of this section is 
illustrated by solutions to the following examples in Section 4: i) a vortex flow problem with 
spiral magnetic lines; (ii) a radial flow problem with spiral magnetic lines; iii) hyperbolic flows 
with straight magnetic lines; and iv) spiral inviscid flows with spiral magnetic lines. 

2. Equations of motion 

The steady, plane flow of a viscous, incompressible fluid of infinite electrical conductivity is 
governed by the following system of equations: 

au + av 0, 
~x ay 

uau a.) ap I p + - - =  - - +  

(u ) +,',q "",t 
u H 2 - v H a  = k, bHx + aH2 = 0 

~x by 

where u, v are the components of the velocity field V, HI, / /2  the components of the magnetic 
vector field H and p is the pressure function; all being functions o f x , y .  In this system p, rl, ta, 
are respectively the constant fluid density, the constant coefficient of viscosity and the 
constant magnetic permeability. Furthermore, k is an arbitrary constant of integration obtained 
from the diffusion equation curl (V x H) = 0; k is zero for aligned flows and non-zero in the 
case of non-aligned flows. 

Introducing the functions 

a__v _ a__.. all2 ant 
= Bx By'  ] - Bx By ' h = ½pq2 +p,  (1) 

where q2 = u 2 + v2, the above system of equations is replaced by the following system: 

a_u + a__v = 0 ,  
ax ay 

(continuity) 
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0w 0h  
n ~ - pvo.~ + Iz/H2 - Ox'  

06o Oh 
71 -~x -- pu¢o + lajH~ = Oy 

(linear momentum) 

uH2 -- vH1 = k, (diffusion) 

OHI OH2 
- -  + = 0, (solenoidal) 
0x 0y 

0v 0u 
= w, (vorticity) 

0x 0y 

0H2 0H1 
- -  - ], (current density) 

Ox Oy 

(2) 

of seven non-linear partial differential equations in seven unknowns u, v, H~, H2, ~,  ] and h as 
functions of x, y.  This system has the advantage of being a system of first order. Martin [ 16] has 
successfully used such a reduction of order from two to one to study viscous non-MHD flows. 

We now consider variably inclined plane flows and let a = a ( x , y )  be this variable angle such 
that a ( x , y )  ~ 0 for every ( x , y )  in the flow region. The vector and scalar products of V and H, 

using the diffusion equation in (2), yield 

uH2 - v H 1  = qH sina = k, 
(3) 

uH~ +vH2 = q H c o s a  = kcotc t  

where H =x/-ff~ + H] .  Considering these as two linear algebraic equations in the unknowns 

H~,/ /2,  we solve these in terms of u, v and et; i.e. 

k 
HI = ~'i (u cot a -- v), //2 = (v cot a + u). (4) 

Alternatively, one can solve (3) for u, v in terms of Hi ,H2 and a to get 

k k 
u = ~ (HI cot ot +/-/2 ), v = ~-~ (/-/2 cot a - Hs ). (5) 

We now distinguish between two types of approaches. First, equations (4) can be employed to 
eliminate functions HI and//2 from the system of equations (2). The unknown functions, to 
be determined, will then be u, v, h, ~ ,  ] and a. Secondly, one can eliminate u and v from the 
system (2) by using equations (5). One then obtains a system of equations to be solved for HI,  
//2, h, ~ ,  ] and a as functions of x, y.  The first approach leads us to the study of flows, after 
hodograph transformations, in the hodograph plane. Likewise, the second approach leads to the 

study in the magnetograph plane. 
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Taking the first approach, we eliminate functions HI and//2 from the system of equations 
(2), by using equations (4), and obtain the following system of six partial differential equations: 

0u + Ov = O, 
bx ay 

o~ ~ Oh 
n ~ - pv¢o + - -  (v cot ~ + u ) ]  = - a x '  

boo /ok a h 
~?'~x--PU~+-'~ (u cota--V)] = Oy ' 

~Oy ~xx +(v2 c° ta - -u2  cotc t+2uv)  ~x - -  (6) 

~x a ) av au +q2 u a co t t~+v~y  cota = 0, OX--~-yy = 60, 

(  oto+u) 
Ox q2 -- k ~yy qa = J 

for the six unknown functions u, v, ], co, h, a of x, y. Once a solution for this system is 
determined, the pressure function and the magnetic vector function are obtained by using the 
definition of h in (1) and equations (4) respectively. 

Taking the second approach, we eliminate functions u and v from the system of equations 
(2), by using equations (5), and obtain the following system of six partial differential equations: 

alia +OH2 = 0, 
Ox Oy 

0¢o ~_~ Oh 
~ x  +IaH2]-- (112 cot or--Hi)co = - - ~ ,  

ax 

0¢o ~ 0h 
"~x +/all1 ] -- (Ha cot t~ + H2)6o = 0y ' 

(-~, - M I  - 2 . , H ~  cot,~) [ ~ "  + aM,] ~ay --~-x ] +(H~ cot a - - H I  cot o l -  2atH2) (7) 

ax ~ y ]  + H, ~x cota +//2 ~y cota  = 0, 

k a [H2 cota--H11 ~ [HI c o t a + H z ]  
] = tO ,  

all2 all1 - /  
ax ay 
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for the six unknown functions HI, /- /2, / ,  co, h, a of (x,y). Once a solution of this system is 
determined, the velocity vector field is obtained from (5), and then the pressure function is 
found by using the definition o fh  in (1). 

3. Study o f  f lows in the hodograph plane 

Here we develop the first approach. System (6) of six partial differential equations is our 
starting point. 

Letting the functions u =u(x ,y) ,v= v(x,y) to be such that, in the region of flow, the 
Jacobian 

au av au av 
J(x,y)  - ax ay ay ax q: o, IJI < ~,  (8) 

we may consider x and y as functions of u and v. By means o f x  =x(u,v) ,y  =y(u,v), we 
have the relations 

au _ y by au _ _ ax by y by by = y ax 
ax a v '  by J a v '  a--x = a u '  by a u  (9) 

Furthermore, using (9), we have 

a(u,,,) _/a(~,y)y' = s ( u , ~ , )  
J (x, y ) - - ~ ,  ..~) ~ b (u , v) ] (10) 

and 

a f  _ a ( L y )  .7 a ( f , y )  _ s a(f,y_____) 
ax a(x,y)  a(u,v) a (~ ,v) '  

a Z = a ( L x )  _ 7 a (x , f )  _ J a(x,j_) 
ay a(x,y)  a(u,v) a(u,v) 

(11) 

where f = f ( x , y )  is any continuously differentiable function and f(u,v) is its transformed 
function in the (u, v)-plane. 

Employing these transformation relations for the first order partial derivatives and equation 
(10) in the system of equations (6), the transformed system of partial differential equations in 
the (u, v)-plane is: 

ax ay 
- -  + - -  = o, (12) 
au av 
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r/J m 

~ j m  

a(x, co) 
a(u, v) 

a(co,y) 
a(u,v) 

pvco + #k ~- ( v c o t , ~ + u ) / = - ] ~  a(h,y) 
a(u,v)' 

uk sa(x,h)  puco+-~- i (u c o t a - v ) ]  = a(u,v) ' 

a } Ox 
v(u= + v=) ~v cot a - 2uv + (u = - v 2) cot o~ ~u 

a }ax  
+ 2 u v c o t a + ( u  2 - v 2 ) - v ( u  2 +v2)-~u c o t s  ~vv 

+ 2 u v c o t ~ + ( u  a - ~ ' ) - u ( u  2 +v2)~--~v c o t a  au 

a } ay  
+ u(u2+v2)-~u c ° t a + 2 u v + ( v 2 - u 2 ) c ° t ~  Ovv = 0, 

(13) 

(14) 

,(15) 

= j. (17) 

{ (vco, +u) 
kS a (u, v) 

a(x, u cot a -  v] 

a(u, v) 

This is a system of  six partial differential equations in six unknown functions x(u, v), y(u,  v) 
and the four transformed functions co(u, v), h(u, v),/(u, v), ~u ,  v) when J = O(x,  y)/O(u, v))- 1 
is employed from (10). Once a solution set x = x(u, v), y = y(u,  v), 6o = co(u, v), h = h (u, v), 
/ = / ( u ,  v), ~ = a(u, v) is determined for this system, we are lead to the solutions u = u(x,y) ,  
v = v(x ,y)  and, therefore, co = co(x,y), h = h(x,y) ,  ] =/ (x ,y ) ,  ot = ot(x,y)  for the previous 

system of equations (6). The equation of  continuity implies the existence of  a streamfunction 
~(x ,y )  so that 

a~0 aqJ 
d~ = -- vdx + udy, or - v, = u. (18) 

~x Oy 

Likewise, equation (12) implies the existence of  a function L(u, v), called the Legendre trans- 
form function of  the streamfunction ~k(x, y) ,  so that 

OL aL 
dL = - - y d u + x d v ,  or - -  = - - y ,  - -  = x (19) 

au av 
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and the two functions ~O (x, y), L (u, v) are related by 

L ( u , v )  = v x - u y  + q,(x ,y) .  (20) 

Introducing L (u, v) into the system (12) to (17), with J given by (10), it follows that equation 
(12) is identically satisfied and this system may be replaced by 

/.tk 
rlJ pv¢o + -  S (vcota  + u)] = J , (21) 

a (u, v) a(u, v) q -  

#k 
7/J a (u, v) + pu6o -- q-~ (u cot a -- v)j = - S b (u, v--------) ' (22) 

{ }+=+ v 2 --u 2 - 2 u v c o t a + u ( u  = + v  2) cota  bu = 

{ ~ v=) ~ } a2z' + 2 ( u 2 - - v 2 ) c ° t o t - - 4 u v - - u ( u 2 + v 2 )  c ° t u + v ( u 2 +  av c°t'~ auav 

b ] i~2L 
+ u 2 --Z~ +2uvcotol- -V(u 2 + ~ )  ~u coto~J~-~- 

,(+"+ 
~au= +av 2] = co, 

= O, (23) 

(24) 

with 

,cot,,+u) 
a ~au q2 

kJ a (u, v) + 

[+=,+ +=,+ t+=,+l=] -' 
au = av = \ a u a v ]  J 

a[~-~v,aL V-Uq2COt t~)t 

~(u, ;~ i = ] 

= J  

(25) 

(26) 

for the six functions L (u, v), h (u, v), ~(u,  v), / (u, v), a(u, v) and J (u, v). 
We now define 

a ~,, , . ,  ~,a¢, ,s ~ +.," a-~] 

a(u,v) a(u,v) ' QI (u, v) = (27) 
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Q2(u,v) 

~ a u ' _  ~au ' J a--~- +J av~/ 

a(u,v) a(u,v) 

and use the integrability condition 

(28) 

i)2L i~ 
J auav av av ~ ~u a(., v) 

( 11 = j a2L a a2L a 
au ~ ~ J a~-~ a2 J ~ , i  J' 

i.e. a2h/axay = ~2h/ay ax, to eliminate h (u, v) from equations (21) and (22) to obtain 

-~v ,JQI a ~u , JQ2 

+ 
a(u, v) a(u, v) 

-p (vQ,  +uQ2) 

+ ~ -  (v cot a + u) 
:,t ( u,tl it avv' a , 

a (u,-----~- + (u cot a - v) ~ J 0. (29) 

Equations (23) and (29) constitute a system of two non-linear partial differential equations in 
two unknowns L(u, v), or(u, v) in the hodograph plane after ], J, Q1, Q2 are eliminated from 
(29) by using their differential expressions from (25) to (28). Therefore, a variably inclined 
steady plane flow of a viscous or inviscid fluid of inf'mite electrical conductivity must satisfy 
this system. Once a solution L = L(u, v), a = ~t(u, v) of this system is at hand, for which J 
evaluated from (26) satisfies 0 < IJI < ~ ,  the solutions for the velocity components u(x,y), 
v(x,y) are obtained by solving simultaneously equations (19) i.e. x = aL/av, y = -  aL[i~u. 
Having obtained velocity components in the physical plane, we obtain ~t in the physical plane 
from the solution for a in the hodograph plane. Finally, ~(x,y),  h(x,y),j(x,y),  Hl(X,y), 
/-/2 (x, y)  and p (x, y)  are determined by using system (6) and equations (4), (1). 

We now derive equations (23), (29) in polar coordinates (q, 0) in (u, v)-plane. We have 

q = v r ~ + v  2 0 = tan  -1  v , - or u = q cos O, v = q sin/9 (30) 
U 
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8 8 sin 0 8 8 8 + cos____O0 __8 (31) 
8u - cosOsq q 00' 8V - sinOsq q 80" 

Defining L* (q, 0), a* (q, 0), 6o* (q, 0) , /*  (q, 0), J*(q, O) to be respectively the Legendre trans- 
form, variable angle, vorticity, current density, Jacobian function in (q, 0)-coordinates, and 
using (30), (31) and 

a(F, C)  _ a (F* ,  C* )  a(q, o) _ 1 a(F* ,  c * )  
8(u,v) 8(q,O) 8(u,v) q 8(q,O) (32) 

where F(u, v) = F*(q, 0), G (u, v) = G* (q, O) are continuously differentiable functions, we 
obtain that L*(q, O) and a*(q, 0) satisfy 

( 8 ) 82L* (~_q 2 )82L* 1 b2L* 1 8L * 
1 -- ~-~ cot a* ~ + cot a - - cot a q2 

8q 2 q 808q 802 q 8q 

+ / Z  1 a ~ aL* 
q2 c o t  a - -  - = ,, o,  

[ (smO L'+co'OOL'.) ( 8---q- q ~ ' J Q~' 8 cos 0 8q 

n 8(q,o) + 

_ pq2 (sin 0 Q~ + cos 0 Q~)+ (sin 

_ _  sin O , j , Q 
q 

8(q,O) 

0 cot o~* + cos O) 

a(  sin ° 8L* + c°s---° 8L* ) 
8-q g a0 '/* 

8(q,o) + (cos 0 cot a* -- sin O) 

8 (cos 0 

× 

8L* sin 0 8L* ,)]  
~q a ao ' ]  

8(q,O) O, 

(33) 

(34) 

where 

J* (,7, O) = 
q4 

q2 92L__Z aL* + _ 
Oq 2 q 8q 802 ] \ 80 -- q ~---~] 

(35) 
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and 

/ * (q ,O)  = ~ cote*--Oq 2 + ~ +q '~-q  ~q 

+ (2 -- ~o cot °*) {~-~(~ OL*II] a o / j j '  

O(sinO0" c°sO OL" ,:) 
1 Oq q 00 ' 

Q~(q,O)  = Q l ( u , v )  = - q O(q, O) 

(36) 

(37) 

a( c°s°°L* sin°°L* ) a q  q 
Q~'(q,o) Q2(u,~) 1 a°'~°* 

= = - ( 3 8 )  q a(q,O) 

j ,  (02L * 1 02L * + 1  OL* 1 
f,o* (q, O) T q (39) 

Once a solution L* = L* (q, O), a * = o * ( q , O )  of the system of equations (33), (34) is 
determined, we employ 

aL* cos 0 OL* sin 0 OL* 
x = s i n O  + - -  y - 

Oq q 00 ' q 00 
aL* 

cos O (40) 
a q  

and (30) to obtain u = u ( x , y ) ,  v = v ( x , y )  in the physical plane. The remaining flow variables 
are then obtained, in the physical plane, by using the flow equations in the physical plane. 

4. Solutions 

The general solution set of either system of equations (23), (29) in (u, v)-coordinates or (33), 
(34) in (q, 0)-ordinates seems to be impossible. We, therefore, examine some special forms of 
solutions as applications of these systems. 

EXAMPLE I: Vortex flow. In this example, we wish to determine the solution of a flow 
problem when the Legendre transform function is of the form L * ( q , O ) = F ( q )  in (q, 0)- 

coordinates or L(u,  v) = F ( x / ~  + v 2) in (u, v)-coordinates in the hodograph plane. 
Let us assume 

L*(q, O) = F(q)  (41) 
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to be the Legendre transform function for the system of equations (33), (34) such that F'(q) 
4: 0, F"(q) 4= 0. 

Using (41) in (33), we find that a* (q, 0) satisfies 

qF" (q) ~0 (cot a*) + F' (q) = qF" (q) 

and, therefore, its integration yields 

cota* = (1 ql F'(q)~ F---'~)] 0 + G(q) (42) 

where G(q) is an arbitrary function. 
By using (41) and (42) in (35) to (39), the expressions for J*,]*,  w*, Qt and Q~ are found 

to be 

j *  = q 
, ]* F'(q)F"(q) = A(q)O + B(q), 

oo* qF"(q)+ F'(q) ?'(q)-c°sO][qF'--'(q)+ (43, 
= F'(q)F"(q) ' Q7 . . . .  \ q ]k F'(q)F"(q) ] ' 

F'(q)F"(q) ] ' 

where 

A(q) = ( qF, (q~F,, (q)) (F" (q)--~ F' (q) + ~ 

L ) 
2F'2(q) + F'2(q)F'"(q) 
q2F"(q) qF"2(q) 

B(q) = qF'(~F"(q) q 

(44) 

We now eliminate the functions L*, ot*,J*,/*, Q~ and Q~ from (34) by using the expressions 
for these functions from (41) to (44) and find that F(q) and G(q) must satisfy 

~2.[~, ~ (:'~'" +q':3--3:"2 +2~''") q, " 3 
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+ F'-~qd ~ ]--rlq'~q "~, "~q~" F,~,; 

+#k2G(3qF'F"2--q2F"3--2F'2F"-qF'2F'")] 
z = o, (45) 

if L* (q, 0) given by (41) and, therefore, a* (q, O) given by (42) form a solution set of the 
system of equations (33), (34). 

Since (45) holds true for all values of 0, if follows that F(q) and G(q) must satisfy 

F' ~qd ( qF'2F' '  + q2F'3 - 3qF'F'2 + 2F'2F" 3 

+ (qF'3F '' + 2F'3F" - q2 F'2 F"F'" -- 5qF'2 F"2 + 4q2 F'F"3 --q3F ''~ ) 
q4F,F,,3 = 0 

and 
(46) 

a(u,v) = cot-l(M3 u2 +M3v 2 +M4), 
(50) 

dq k q2F,F,, ]--rlq ~qq ~-; ~qq k" ~'~'7 (47) 

+ , k 2 c  (3qF'p"2-q2F  "3 _ 2F,2F,, _ 
q3F,F,,2 = O. 

Any solution set of these two non-linear ordinary differential equations in F(q), G(q) leads us 
to the solution of a particular flow problem. In the following, we study one of these solutions 
sets. 

A simple solution of (46) such that F'(q) --/= O, F"(q) --b 0 is 

F(q) = Mxq 2 +21'12 (48) 

where M1 :/: O, M2 are two arbitrary constants. Using (48) in (47) and solving the resulting 
differential equation, we find 

V(q) = M3q 2 +21/4, (49) 

where 343,344 are arbitrary constants. Employing (48), (49) in (41), (42), we fred that 

L*(q,O) = Mlq 2 +M2, or L(u,v) = Ml(u 2 +v2)+M2, 

a*(q,O) = cot-l(M3q 2 +M4), or 
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is a solution set of the system of partial differential equations (33), (34) or (23), 
(29). 

Using the Legendre transform function from (50) in equation (40) and (43), expressions for 
the velocity components, the vorticity and the current density are obtained as 

- y x 1 kMa 
u = v = - -  ~ = - -  ] = (51) 

2Mx' 2M1 ' Mt ' M1 

The variable angle between the velocity and magnetic fields, in the physical plane, is obtained 
by using (51) in (50) 

a(x,y) = c°t-I [ M3(x24M]+y2) +M4] (52) 

and, therefore, the magnetic field, by using (51) and (52) in (4), is given by 

[[2M1 (X(x 2 +y2)+M4Y) Ma ] , ~[ 2M,(M4X(x.2_+y2)-y) Max ]] 
Ht = --k +2MlY , /-/2 = x / + 2 M x "  

(53) 
Finally, employing (51) to (53) in the linear momentum equations of system (2) and 

integrating, we f'md the function h(x,y). Using this solution for h(x,y) and (51) in the 
definition of h (x, y) in (I), the pressure function is 

p(x,y) = ~ (x 2 + y2) + 2M312k2 tan -1 x 
8Ma y 

--MaM4lsk 2 In (x 2 + y 2 ) + M s ,  

M~lak 2 
4M~ 

_ _  (x 2 + y 2 )  

(54) 

where Ms is an arbitrary constant. 
Summing up: 'A variably inclined steady plane MHD flow problem with the families of 

streamlines and magnetic lines given by 

X 2 +y2 = constant, 

M3 (x 2 +y2)  + 4M~lM4 In (x 2 +y2)  + ~ tan-t (y/x) = constant 

has the solutions u(x,y), v(x,y), Ha(x,y), 112 (x,y) and p(x,y) obtained in equations (51), 
(53) and (54).' 

EXAMPLE II: Radial flow. In this example, we wish to determine the solution of a flow 
problem when the Legendre transform function is of the form L*(q, 0)= F(8) in (q, 0)- 
coordinates o r  L (u, v )  = F{tan -1 (v/u)} in (u, v)-coordinates in the hodograph plane. 
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Let us assume that 

L*(q,0) = F(O) (55) 

is the Legendre transform for the system of equations (33), (34) such that F '  (0) :~ 0. 
From (55) and (33), we have the partial differential equation 

a or* F"(O) = 0 (56) q ~qq (cot t~*) -- 2 cot + F'(O) 

satisfied by a*(q, 0). The general solution of (56)is 

cot t~* F"(O) = 2F'(O-------)) + q2G(O)' (57) 

where G(0) is an arbitrary function of 0. Employing (55), (57) in (35) to (39), we have 

q4 
J*(q,O) = F,2(O), ]*(q,O) = A(O)+q2B(O), 

¢o*(q,O) = - q '  F"(O) Q~(a,O) = (F ' " (O)cosO-2F"(O)s inO)  
F, 2 ( O ) , \ (58) 

and 

Q2(q,* 0 ) =  _ ~(F'"(°) sinOqF,(0) + 2F"(0)cos 0)  , 

where 

A(O) = k (4F'2(O)+2F' '2(O)-F ' (O)F' ' (O)  - , 

(59) 

B(O) = -- k ~[F'(O)G'(O) +-~'T(-~F"(O)G(O) ) . 

We now use (55), (57), (58), (59) in equation (34) and obtain that the functions F(O), G(O) 
must satisfy 

(8rtF'F" + 2rlF'F ~v + 4pF'2 F " -- 41ak2 F ' a GG' -- 4tak2 F ' 2 F" G2)q4 

+ 2 la k 2 (F' 3 G" + F' 2 F"G ' + F' 2 F' "G -- F'F" 2 G)q 2 

+ lak2(4F'2F" + 6F "a -- 6F 'F"F '"+ F '2F iv) = 0, (60) 
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if the assumed Legendre transform function in (55) and, thereby, the derived variable angle in 
(57) form a solution set of equations (33), (34). Since equation (60) holds true for all values of 
q, it follows that F(O) and G(O) must satisfy 

F'2F iv -- 6F'F"F'" + GF "a + 4F'2F " = 0, 

F'aG " + F'2F"G ' + (F'2F ' '  - -F 'F"2)G = 0, 

2rlF'F iv + 8rlF'F" + 4pF'2F " --4gk2F'aGG ' -  41.tk2F'2F"G 2 = O. 

(61) 

(62) 

(63) 

Every solution set {F(0), G(0)} of these three non-linear ordinary differential equations leads 
us to the solution of a particular flow problem. In the following, we study one of the flow 
problems. 

A simple solution of (61) such that F' (0) 4= 0 is 

F(0) = N, 0 + N2, (64) 

where NI 4= 0, N2 are arbitrary constants. This solution for F(O) and equations (62), (63) 
require that G(O) must satisfy G"(O)= 0 and G(O)G'(O)= 0, that is, G(O) is an arbitrary 
constant. If this arbitrary constant is zero, then (64) and (57) imply that t~* (q, 0) = 7r/2, that 
is, the streamlines and the magnetic lines are everywhere orthogonal. This problem has been 
discussed by Chandna and Garg [12]. Here we study the case when F(O) is given by (64), 
G(O) = Na, N3 4= 0 is an arbitrary constant, and, therefore, have 

L*(q,O) = NxO + N2 or 

ot*(q,O) = cot-l(N3q 2) or 

L(u,~)) = N1 tan -1 v_ + N 2 ,  
u 

t~(u,v) = cot-1 (Nau 2 +Nay  2) (65) 

as a solution set of the partial differential equations (33), (34) or (23), (29). 
Following the previous example we find that 

NIx  N I y  
u(x ,y)  x = + y2,  v (x ,y )  x 2 + y2,  

H , ( x , y )  = ~ [" x-g-~-- ~ , Hz(x ,y )  = -~1 [ -x¥-~Y 2 ' 

(66) 
ok2[ Y y = ]  PN2x 

p(x ,y)  = N--~a 2N]Na tan-I x - --(x2 + ) 2(x 2 +y2)  +N4'  

where N4 is an arbitrary constant and N2 > 0. 
Summing up: 'A variably inclined steady plane MHD flow problem with the families of 

streamlines and magnetic lines given by y[x = constant, 
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(x 2 + y 2 ) _  2N]N3 tan -t (y/x) = constant, having the variable angle 

a(x, y) = cot- t [N3N~/(x 2 + y2)] between them, has the solutions given by (66).' 

EXAMPLE IIh Hyperbolic flow. In this example, we take 

L(u,v)  = Au ~ + B y  ~, (67) 

where A and B are two non-zero and un-equal real numbers and look for soluitons of a flow 
problem when the Legendre transform in (u, v)-coordinates in the hodograph plane is of this 
form, satisfying the system of equations (23), (29). 

Using (67) in (23), the partial differential equation in a(u, v) is given by 

~u a Bv(u 2 +v 2) (cota)--Au(u 2 + v 2 ) ~  v (cota)+(2Auv--2Buv)(cota)  

+ ( O - A ) ( :  - u  ~) = 0. (68) 

The general solution of (68) is 

cota  = 
(A - B)uv 

Au 2 + By 2 
+ s (u  2 +v2)F(Au ~ +Bye) ,  (69) 

where F(Au 2 + By 2) is an arbitrary function of its argument. 
Using expressions for L(u, v), ~(u, v) from (67), (69) in equations (24) to (28), we have 

1 A + B  
J (u, v) 4AB ' co 2AB 

/ a . u ~  k ( B - A ) u v  
/(u,v) = k I'L-:::-I F(Au~ +Be)+ ~(,: + v2 )F' (Au 2 + By2)+ (Au~ + By2)2, \ z A ]  

Qt(u,v) = Q2(u,v) = O. (70) 

We now use (67), (69) and (70) in equation (29) and obtain the equation that A, B and 
F(Au 2 + By 2) must satisfy so that the assumed L(u, v) is the Legendre transform and derived 
a(u, v) is the transformed variable angle. This equation is 

2AB(u' + e)F" + 2B(B--A),,rP' + [(A + B)(Au' +B:)+ 2AB(,  +:)]F' 
[ Au 2 + By 2 J 

Au - B y  2 ] 
+ (a  -s) [~h--~# ~- ~-~)~] F+ 2A(A --B)uv 

(Au 2 + By2) 3 
=0, (71) 
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where F '  and F"  are the first and second derivatives of F with respect to its argument. Any 

solution of this non-linear ordinary differential equation leads us to the solution of a particular 
flow problem. To obtain a solution of (71), we assume a solution of the form 

F(  Au2 +BY2)  = C(Au 2 +BY2)  m, (72) 

where C, m are two arbitrary real numbers. Substituting (72) in (71), we have 

2 C 2 m B ( B - - A ) u v ( A u  2 +By2)  2m-1 + [2Cm2AB(u 2 + v  2) 

+ 2 C B ( B - - A ) v  2 ] (Au 2 +By2)  ra-2 + C(Am + B m  + A  - -B)(Au 2 +By2)  m -1 

+ 2A(A - -B)uv (Au  2 + B y e )  -3 = O. 

Since this equation is identically satisfied if and only if m = -- 1 and C = --- ~/-L---A[B or C 2 = 
- -A /B ,  it follows that: 

(i) one of  the two unequal real numbers A, B is to be a positive number and the other to be 
a negative number, 

(ii) F(Au 2 + By  2) = +- ~ / ' ~ ] B  (au 2 +By2)  -1 

are the only solutions of (71) having the assumed form (72). Therefore, taking C > 0 and 

A = a 2 > 0; B = - -b  2 > 0; 

we have 

L(u , v )  = a2u 2 - b 2 v  ~, a (u , v )  = 

a,b e R,  

a v - - b u  ] 
c° t - I  L au + bv J (73) 

to be a solution set of equations (23), (29). Following the previous examples we f'md that 

u ( x , y )  - Y x 
2a 2 , v ( x , y )  = 2b 2 , 

2kab ~ 2ka 2 b 
HI (x, y )  = by + ax ' H2 (x" Y) = by + ax 

--P (x 2 +y2)  21ak2a2b2(a2 +b2) +C, 
p ( x , y )  = 8a2b 2 (by + ax) 2 

(74) 

where C is an arbitrary constant. 
Summing up: 'A variably inclined steady plane MHD flow problem with the families of  

streamlines and magnetic lines given by a2x 2 - b2y 2 = constant, by + ax = constant, having 

the variable angle 

• -1 ( a 3 x - b 3 Y  I 

between them, has solutions given by (74).' 
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Another variably inclined flow problem, when C < 0  and A = a 2 , B = -- b 2 < 0; a, b ER,  

corresponds to the solution set 

( a v +  bu~ 
L(u,v)  = a2u 2 --b2v 2, ot(u,v) = cot -1 ~au-----~vJ (75) 

of equations (23), (29). Using this solution set, we find that the streamlines a2x 2 -- b~y 2 = 

constant and mangetic lines a x - b y  = constant form a variably inclined flow problem 

with 

[ a a x + b 3 y  l 
: cot-, " 

Solutions to this problem are 

- - y  - - x  
u ( x , y )  = ~a2 , v ( x , y )  = 2b--.'- ~ , 

2kab 2 2ka2 b 
H x ( x , y )  = ~ ,  H2(x , y )  = ~ ,  (76) 

ax -- by ax -- by 

_ ~ 21ak2a2b2(b 2 + a 2) 
p ( x , y )  = 8a2 b 2 (x 2 + y2)  (ax _ by)2 + C, 

where C is an arbitrary constant. 

EXAMPLE IV: Spiral flow. We take the Legendre transform function, in (q, 0)-coordinates, 

satisfying the system of equations (33), (34) to be 

L*(q, O) = AO + B q  2 + C, (77) 

where A 4= 0, B 4:0 and C are real constants. 
Using (77) in (33), it is found that o~*(q, 0) satisfies the partial differential equation 

Aq ~q  (cot a*) + 2Bq 2 (cot a*) = 2A cot a* = 0. (78) 

The general solution of (78) is 

where F is an arbitrary function of (BM)q  2 - O. 
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Using the expressions for L*, a* from (77), (79) in (35) to (39), we have 

• q4 
J (q,O) = 4B2q 4 - - A  2 , 

I (q,O) = 4 B q 2 F +  " A F'----q-£ 

, (16A2Bq)(2Bq 2 cos0 --A sin 0) 
QI (q, 0) = 

(4B2 q4 _ A 2)2 (80) 

(16A2Bq)(2Bq 2 sin 0 + A cos 0) 
02 (q, 0) = -- 

(4B2q 4 --A2) 2 

6o*(q, O) = 4Bq4 
4B2q 4 - - A  2 , 

where F '  denotes differentiation of F with respect to its argument. We use (77), (79), (80) in 
equation (34) to ehmmate L , a , J ,i , QI, Q2 and obtain the equation 

+ (1280#k2BSF, , )q l6  + (20481.tk2AB7 F,  _ 5121.tk2A2B6FF')q14 

+ (1024A2BSr/+ 256A3BSp -- 6 4 0 # k 2 A 2 B 6 F  " _ 2 5 6 # k 2 A 3 B S F  2 

+ 10241ak2A2B6F - 10241ak2ABT)q t~ + (1921ak2A4B4FF' -- 7681ak2A3BSF')qlO 

+ (1024A4B3r/-  128ASB3p + 160#k2A4B4F"  + 1281.tk2ASB3F2 

- -  512 #k2A 4B 4F  + 512#k2A3BS)q  s + (128#k2ASB3F  ' -  321.tk2A6B2FF')q 6 

+ (64A6Br/+ 16ATBp-  201ak2A6B2F"_  161ak2A7BF 2 + 64t.tk2A6B2F 

-- 64gk2ASB3)q  4 + (21ak2ASFF ' - 81.tk2ATBF')q 2 + lak~ASF" = 0 (81) 

to be satisfied by F{(B/A)q  2 --0} so that the assumed L* (q, 0) and thereby the obtained 
a*(q, 0) form a solution set of equations (33), (34). 

Equation (81) is a twentieth degree equation in q and the coefficients of  different powers 
o fq  are functions of (B/A)q 2 - O .  Since 

a(q,O) = 1 : # 0  
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for every (q, 0), it follows that (B/A)q 2 --  0 and q may be considered as independent variables. 
Using this choice of independent variables and the fact that equation (81) holds true for 
different values of q, we are lead to the consequence that all the coefficients of different 
powers of q in (81) must be zero. We, therefore, have the following equations to be satisfied by 
F{(B/A)q  2 --  0): 

F" = O, (82) 

A F F ' - - 4 B F '  = O, (83) 

8A~I + 2A2p  -- 5 # k 2 A B F "  - 2 # k 2 A 2 F  2 + 8 ~ t k 2 A B F -  8 # k 2 B  2 = 0, (84) 

32A7/+ 4A2p + 51~k2ABF " + 4 # k 2 A 2 F  2 --  1 6 # k 2 A B F +  16/~k2B 2 = 0, (85) 

16A~ + 4A2p -- 51~k2ABF " - - 4 # k 2 A 2 F  2 + 1 6 # k 2 A B F - -  16#k2B 2 = 0. (86) 

From (82) to (86), it follows that F{(B/A)q  2 --0} must be such that either F = 4B[A or F is 
some other constant and, furthermore, A, B and F are related by 

4A~7 + A2p  - 1 2 k 2 A 2 F  2 + 4 g k 2 A B F  - 4#k2B 2 = O, 

8A~ - A ~ p  + # k 2 A 2 F  2 - 4 # k 2 A B F  + 41.tk2B 2 = O. 
(87) 

From equation (87), we find that ~ must be zero and 

F - - 2 B + ! ~  " A  k 

Therefore, 

L*(q, O) = .40 + Bq 2 + C, 
(88) 

and 

. 
- (q ,o )=  cot-' -A q 

(89) 

are solution sets of the system of equations (33), (34) with ~ = O. 
Following the previous examples, solutions to every variably inclined inviscid spiral flow 

resulting from these solution sets can be determined. 
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